3.2 熱容量の体積依存性が

\[
\left(\frac{\partial C}{\partial V} \right)_T = T \left(\frac{\partial^2 P}{\partial T^2} \right)_V
\]

であることを示せ。

答:

\[
\left(\frac{\partial C}{\partial V} \right)_T = \left(\frac{\partial}{\partial V} \left(\frac{\partial U}{\partial T} \right)_V \right) T \quad (\because \text{教科書の式 (3.12)})
\]

\[
= \left(\frac{\partial}{\partial T} \left(\frac{\partial U}{\partial V} \right)_V \right) \quad (\because \text{微分順序の交換})
\]

\[
= \left(\frac{\partial}{\partial T} \left(-P + T \left(\frac{\partial P}{\partial T} \right)_V \right) \right) \quad (\because \text{エネルギーよ方程式})
\]

\[
= -\left(\frac{\partial P}{\partial T} \right)_V + \left(\frac{\partial P}{\partial T} \right)_V + T \left(\frac{\partial^2 P}{\partial T^2} \right)_V
\]

\[
= T \left(\frac{\partial^2 P}{\partial T^2} \right)_V
\]

よって示された。

参考：微分順序の交換

\(f(x, y) \) に対しその偏微分係数 \(f_{xy} = \left(\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right)_y \right)_x, f_{yx} = \left(\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)_x \right)_y \) が存在しだかつ連続であれば、微分演算の順序を交換することができる。

\[
f_{xy} = f_{yx}
\]

詳しくは微分積分の参考書を参照のこと。