4.3 ファンデルワールス気体について、$Q[T, V_0 \xrightarrow{qs} V_1]$ を計算せよ。

答: 準静的等温過程 $[T, V_0 \xrightarrow{qs} V_1]$ によって流体が周囲の熱源からもらう熱 $Q[T, V_0 \xrightarrow{qs} V_1]$ は、熱力学第 1 法則 $ΔU = Q + W$（力学装置に気体が与られる仕事）から求めることができる。まず最初に W を求める。ファンデルワールス気体の状態方程式は

$$P = \frac{NRT}{V - bN} - \frac{aN^2}{V^2}$$ \hspace{1cm} (1)

なので、準静的等温過程 $[T, V_0 \xrightarrow{qs} V_1]$ によって気体が力学装置にされる仕事 $W[T, V_0 \xrightarrow{qs} V_1]$ は、教科書の式 (3.21) から考えても分かるように、

$$W[T, V_0 \xrightarrow{qs} V_1] = - \int_{V_0}^{V_1} PdV$$

$$= - \int_{V_0}^{V_1} \left(\frac{NRT}{V - bN} - \frac{aN^2}{V^2} \right) dV$$

$$= - \left[NRT \ln \frac{V_1 - bN}{V_0 - bN} + aN^2 \left(\frac{1}{V_1} - \frac{1}{V_0} \right) \right]$$ \hspace{1cm} (2)

である。

次に $ΔU$ を求める。理想気体と異なり、温度のみで内部エネルギーが決まるわけではないので $ΔU = 0$ とは限らない。$ΔU = U(T, V_1) - U(T, V_0)$ は教科書の問題 3.3 の途中で出てきた式

$$ΔU = cNRΔT - aN^2 \left(\frac{1}{V_1} - \frac{1}{V_0} \right)$$ \hspace{1cm} (3)

から求めることができる (この式の導出までには問題 3.3 で出てきた断熱自由膨張の仮定は用いていないことに注意。つまり、この式は、この問題 (準静的等温過程) にも用いることができる)。等温過程 ($ΔT = 0$) なので式 (3) の第一項は 0 となり、結局、

$$ΔU = -aN^2 \left(\frac{1}{V_1} - \frac{1}{V_0} \right)$$ \hspace{1cm} (4)

となる。これらの結果を用いて、熱力学第 1 法則から

$$Q[T, V_0 \xrightarrow{qs} V_1] = ΔU - W[T, V_0 \xrightarrow{qs} V_1]$$

$$= -aN^2 \left(\frac{1}{V_1} - \frac{1}{V_0} \right) + \left[NRT \ln \frac{V_1 - bN}{V_0 - bN} + aN^2 \left(\frac{1}{V_1} - \frac{1}{V_0} \right) \right]$$

$$= NRT \ln \frac{V_1 - bN}{V_0 - bN}$$ \hspace{1cm} (5)

と求まる。