Profile & Pblications (Japanese Profile, Publications / English)


Profile

Masashi Arakawa
Associate Professor
Laboratory for Earth System Chemistry, Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University

Hometown: Hayama, Kanagawa, Japan.


Educational Background

2006 B.S., Department of Chemistry, Faculty of Science, Tokyo University of Science, Japan.
2008 M.S., Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.
2010 M.S. (Sub-major), Science Interpreter Training Program, Graduate School of Arts and Science, The University of Tokyo, Japan.
2011 Ph.D., Geochemical Laboratory, Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.


Scientific Experience & Career

2007 Assistant of experiments, Meteological College, Japan.
2008 Research student, Japan Atomic Energy Agecy, Japan.
2008–2011 Research fellow (DC1), Japan Society for Promotion of Science.
2011–2024 Assistant Professor, Quantum Chemistry Laboratory, Department of Chemistry, Faculty of Science, Kyushu University.
2024– Associate Professor, Laboratory for Earth System Chemistry, Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University.


Research and Study Abroad

Jul. 2008 UC Berkeley-Univ. Tokyo “The Advanced Summer School in Radiation Detection & Mesurements”, UC Berkeley, CA, USA.
Feb. 22Mar. 25, 2009 Global COE Research Abroad Program, Oak Ridge National Laboratory, TN, USA.
Aug. 5Aug. 20, 2009 Oak Ridge National Laboratory, TN, USA.
Mar. 2Mar. 20, 2010 Oak Ridge National Laboratory, TN, USA.
Mar. 7Mar. 18, 2012 EEP program, Research Group Professor Wöste, Fachbereich Physik der Freien Universität Berlin, Germany.
Apr. 2Apr. 10, 2016 JSPS Bilateral Program, Prof. G. Naresh Patwari (Chemical Physics Laboratory), Department of Chemistry, Indian Institute of Technology Bombay, India.


Pubrications

❉ Peer-reviewed original papers

44. M. Arakawa, S. Kono, Y. Sekine, and A. Terasaki (2024)
Reaction of size-selected iron-oxide cluster cations with methane: A model study of rapid methane loss in the Mars’ atmosphere,
Phys. Chem. Chem. Phys. 25, in press. [doi: ###]

43. Y. Suzuki, K. Matsumoto, R. Nomi, M. Arakawa, T. Horio, and A. Terasaki (2024)
Photoelectron Imaging Signature for Selective Formation of Icosahedral Anionic Silver Cages Encapsulating Group 5 Elements: M@Ag12 (M = V, Nb, and Ta),
J. Phys. Chem. Lett. 15, 4327–4332. [doi: 10.1021/acs.jpclett.4c00775]

42. S. Kawamura, M. Yamaguchi, S. Kono, M. Arakawa, T. Yasuike, T. Horio, and A. Terasaki (2023)
Photodestruction Action Spectroscopy of Silver Cluster Anions, AgN (N = 3–19), with a Linear Ion Trap: Observation of Bound Excited States above the Photodetachment Threshold,
J. Phys. Chem. A 127, in press. [doi: 10.1021/acs.jpca.3c02900]

41. K. Minamikawa, T. Nishizato, H. Hashimoto, K. Matsumoto, M. Arakawa, T. Horio, and A. Terasaki (2023)
Probing Superatomic Orbitals of Sc-Doped and Undoped Silver Cluster Anions via Photoelectron Angular Anisotropy,
J. Phys. Chem. Lett. 14, 4011–4018. [doi: 10.1021/acs.jpclett.3c00538]

40. M. Arakawa, N. Hayashi, K. Minamikawa, T. Nishizato, and A. Terasaki (2022)
Exploring s–d, s–f, and d–f electron interactions in AgnCe+ and AgnSm+ by chemical reaction toward O2,
J. Phys. Chem. A 126, 6920–6926. [doi: 10.1021/acs.jpca.2c04941]

39. T. Hayakawa, M. Arakawa, K. Minamikawa, S. Fujimoto, T. Kawano, and A. Terasaki (2022)
Oxidation-state analysis of manganese-oxide clusters, MnxOy+ (x = 4, y = 4–7), by X-ray absorption spectroscopy,
Chem. Phys. Lett. 806, 140056. [doi: 10.1016/j.cplett.2022.140056]

38. T. Horio, K. Minamikawa, T. Nishizato, H. Hashimoto, K. Matsumoto, M. Arakawa, and A. Terasaki (2022)
Photoelectron imaging of size-selected metal cluster anions in a quasi-continuous mode,
Rev. Sci. Instrum. 93, 083302. [doi: 10.1063/5.0097968]

37. K. Minamikawa, M. Arakawa, S. Sarugaku, and A. Terasaki (2022)
Electron counting in cationic and anionic silver clusters doped with a 3d transition-metal atom: endo- vs. exohedral geometry,
Phys. Chem. Chem. Phys. 24, 1447–1455. [doi: 10.1039/d1cp04197e]
Correction: Phys. Chem. Chem. Phys. 24, 2664. [doi: 10.1039/d2cp90012b]
[2022 HOT PCCP Article]

36. M. Arakawa, M. Horioka, K. Minamikawa, T. Kawano, and A. Terasaki (2021)
Reaction of nitric oxide molecules on transition-metal-doped silver cluster cations: Size- and dopant-dependent reaction pathways,
Phys. Chem. Chem. Phys. 23, 22947–22956. [doi: 10.1039/d1cp02882k]
[2021 HOT PCCP Article]

35. T. Hayakawa, M. Arakawa, S. Kono, T. Handa, N. Hayashi, K. Minamikawa, T. Horio, and A. Terasaki (2021)
X-ray absorption spectroscopy of small copper-oxide cluster ions for analyses of Cu oxidation state and Ar complexation: CuOAr+ and Cu2O2+,
Z. Phys. Chem. 235, 213–224. [doi: 10.1515/zpch-2020-1668]

34. M. Arakawa, M. Horioka, K. Minamikawa, T. Kawano, and A. Terasaki (2020)
Reaction kinetics of nitric oxide on size-selected silver cluster cations,
J. Phys. Chem. C 124, 26881–26888. [doi: 10.1021/acs.jpcc.0c08890]

33. M. Arakawa, D. Okada, S. Kono, and A. Terasaki (2020)
Preadsorption effect of carbon monoxide on reactivity of cobalt cluster cations toward hydrogen,
J. Phys. Chem. A 124, 9751–9756. [doi: 10.1021/acs.jpca.0c05819]

32. K. Minamikawa, M. Arakawa, K. Tono, and A. Terasaki (2020)
A revisit to electronic structures of cobalt-doped silver cluster anions by size-dependent reactivity measurement,
Chem. Phys. Lett. 753, 137613. [doi: 10.1016/j.cplett.2020.137613]

31. T. Handa, T. Horio, M. Arakawa, and A. Terasaki (2020)
Improvement of reflectron time-of-flight mass spectrometer for better convergence of ion beam,
Int. J. Mass Spectrom. 451, 116311. [doi: 10.1016/j.ijms.2020.116311]

30. S. Kono, M. Arakawa, and A. Terasaki (2019)
Analysis of cluster growth in magnetron-sputtering metal-cluster source by optical emission spectroscopy,
Chem. Lett. 48, 1537–1540. [doi: 10.1246/cl.190727]

29. S. Sarugaku, M. Arakawa, T. Kawano, and A. Terasaki (2019)
Electronic and geometric effects on chemical reactivity of 3d-transition-metal-doped silver cluster cations toward oxygen molecules,
J. Phys. Chem. C 123, 25890–25897. [doi: 10.1021/acs.jpcc.9b05117]

28. T. Ito, M. Arakawa, Y. Taniguchi, and A. Terasaki (2019)
Adsorption kinetics of nitrogen molecules on size-selected silver cluster cations,
Z. Phys. Chem. 233, 759–770. [doi: 10.1515/zpch-2019-1373]

27. T. Hayakawa, M. Arakawa, K. Ando, Y. Kiyomura, T. Kawano, and A. Terasaki (2019)
Charge-state analysis of small barium-oxide clusters by X-ray absorption spectroscopy,
J. Phys.: Condens. Matter 31, 134003. [doi: 10.1088/1361-648X/aafe18]

26. K. Ando, M. Arakawa and A. Terasaki (2018)
Freezing of micrometer-sized liquid droplets of pure water evaporatively cooled in a vacuum,
Phys. Chem. Chem. Phys. 20, 28435–28444. [doi: 10.1039/c8cp05955a]
[2018 PCCP HOT Article]

25. M. Arakawa, K. Ando, S. Fujimoto, S. Mishra, G. Naresh Patwari, and A. Terasaki (2018)
The role of electronegativity on the extent of nitridation of group 5 metals as revealed by reactions of tantalum cluster cations with ammonia molecules,
Phys. Chem. Chem. Phys. 20, 13974–13982. [doi: 10.1039/c8cp00424b]

24. T. Hayakawa, M. Arakawa, S. Sarugaku, K. Ando, K. Tobita, Y. Kiyomura, T. Kawano, and A. Terasaki (2018)
Characterization of cerium and oxygen atoms in free clusters of cerium oxide by X-ray absorption spectroscopy,
Top. Catal. 61, 119–125. [doi: 10.1007/s11244-017-0869-y]

23. M. Arakawa, T. Omoda, and A. Terasaki (2017)
Adsorption and subsequent reaction of a water molecule on silicate and silica cluster anions,
J. Phys. Chem. C 121, 10790–10795. [doi: 10.1021/acs.jpcc.6b11689]

22. S. Sarugaku, M. Arakawa, and A. Terasaki (2017)
Space focusing extensively spread ions in time-of-flight mass spectrometry by nonlinear ion acceleration,
Int. J. Mass Spectrom. 414, 65–69. [doi: 10.1016/j.ijms.2017.01.003]

21. S. Sarugaku, R. Murakami, J. Matsumoto, T. Kawano, M. Arakawa, and A. Terasaki (2017)
Size-dependent reactivity of nickel-doped silver cluster cations toward oxygen: Electronic and geometric effects,
Chem. Lett. 46, 385–388. [doi: 10.1246/cl.161094]

20. K. Ando, M. Arakawa, and A. Terasaki (2016)
Evaporation processes of a liquid droplet of ethylene glycol in a vacuum,
Chem. Lett. 45, 961–963. [doi: 10.1246/cl.160381]

19. T. Hayakawa, K. Egashira, M. Arakawa, T. Ito, S. Sarugaku, K. Ando, and A. Terasaki (2016)
X-ray absorption spectroscopy of Ce2O3+ and Ce2O5+ near Ce M-edge,
J. Phys. B: At., Mol. Opt. Phys. 49, 075101. [doi: 10.1088/0953-4075/49/7/075101]

18. M. Arakawa, R. Yamane, and A. Terasaki (2016)
Reaction sites of CO on size-selected silicon oxide cluster anions: A model study of chemistry in the interstellar environment,
J. Phys. Chem. A 120, 139–144. [doi: 10.1021/acs.jpca.5b08900]

17. H. Fukazawa, M. Arakawa, H. Yamauchi, Y. Sekine, R. Kobayashi, Y. Uwatoko, S. Chi, and J. A. Fernandez-Baca (2015)
Properties of ferroelectric ice,
JPS Conf. Proc. 8, 033010. [doi:10.7566/JPSCP.8.033010]

16. M. Arakawa, K. Kohara, and A. Terasaki (2015)
Reaction of aluminum cluster cations with a mixture of O2 and H2O gases: Formation of hydrated-alumina clusters,
J. Phys. Chem. C 119, 10981–10986. [doi:10.1021/jp511293g]

15. T. Ito, G. Naresh Patwari, M. Arakawa, and A. Terasaki (2014)
Water-induced adsorption of carbon monoxide and oxygen on the gold dimer cation,
J. Phys. Chem. A 118, 8293–8297. [doi:10.1021/jp501111f]

14. M. Arakawa, K. Kohara, T. Ito, and A. Terasaki (2013)
Size-dependent reactivity of aluminum cluster cations toward water molecules,
Eur. Phys. J. D 67, 80. [doi:10.1140/epjd/e2013-30677-5]

13. H. Ishibashi, M. Arakawa, J. Yamamoto, and H. Kagi (2012)
Precise determination of Mg/Fe ratio applicable to terrestrial olivine using Raman spectroscopy,
J. Raman Spectrosc. 43, 331–337. [doi:10.1002/jrs.3024]

12. M. Arakawa, H. Kagi, J. A. Fernandez-Baca, B. C. Chakoumakos, and H. Fukazawa (2011)
The existence of memory effect on hydrogen ordering in ice: The effect makes ice attractive,
Geophys. Res. Lett. 38, L16101. [doi:10.1029/2011GL048217]

11. M. Arakawa, H. Kagi, J. A. Fernandez-Baca, B. C. Chakoumakos, and H. Fukazawa (2011)
Neutron diffraction study of hydrogen-ordered ice XI: Annealing effect and memory effect,
in Physics and Chemistry of ice 2010 edited by Furukawa Y., Sazaki G., Uchida T. and Watanabe N. (Hokkaido University Press, Sapporo, Japan), pp. 329–338.

10. H. Fukazawa, M. Arakawa, H. Kagi, H. Yamauchi, J. A. Fernandez-Baca, and B. C. Chakoumakos (2011)
Structure and properties of ferroelectric water ice,
in Physics and Chemistry of ice 2010 edited by Furukawa Y., Sazaki G., Uchida T. and Watanabe N. (Hokkaido University Press, Sapporo, Japan), pp. 421–428.

9. J. Abe, M. Arakawa, T. Hattori, H. Arima, H. Kagi, K. Komatsu, A. Sano, Y. Uwatoko, K. Matsubayashi, S. Harjo, A. Moriai, T. Ito, K. Aizawa, M. Arai, and W. Utsumi (2010)
A cubic-anvil high-pressure device for pulsed neutron powder diffraction,
Rev. Sci. Instr. 81, 043910. [doi:10.1063/1.3384238]

8. M. Arakawa, H. Kagi, and H. Fukazawa (2010)
Annealing effects on hydrogen ordering in KOD-doped ice observed using neutron diffraction,
J. Mol. Struct. 982, 111–114. [doi:10.1016/j.molstruc.2010.02.016]

7. J. Abe, T. Hattori, K. Komatsu, H. Arima, M. Arakawa, A. Sano, H. Kagi, S. Harjo, T. Ito, A. Moriai A., K. Aizawa, M/ Arai, and W. Utsumi (2010)
High-pressure experiments with the engineering material diffractometer (BL-19) at J-PARC,
J. Phys. Conf. Ser. 215, 012023. [doi:10.1088/1742-6596/215/1/012023]

6. T. Yasuzuka, H. Ishibashi, M. Arakawa, J. Yamamoto, and H. Kagi (2009)
Simultaneous detemination of Mg# and residual pressure in olivine using micro-Raman spectroscopy,
J. Mineral. Petrol. Sci. 104, 395–400. [doi:10.2465/jmps.090615]

5. M. Arakawa, H. Kagi, and H. Fukazawa (2009)
Laboratory measurements of infrared absorption spectra of hydrogen-ordered ice: a step to the exploration of ice XI in space,
Astrophys. J. Suppl. Ser. 184, 361–365. [doi:10.1088/0067-0049/184/2/361].
Erratum: Astrophys. J. Suppl. Ser. 246, 18 (2020). [doi:10.3847/1538-4365/ab5f5a]

4. S. Odake, S. Fukura, M. Arakawa, A. Ohta, B. Harte, and H. Kagi (2008)
Divalent chromium in ferropericlase inclusions in lower mantle diamonds revealed by micro-XANES spectroscopy,
J. Mineral. Petrol. Sci. 103, 350–353. [doi:10.2465/jmps.080620d]

3. H. Ishibashi, M. Arakawa, S. Ohi, J. Yamamoto, A. Miyake, and H. Kagi (2008)
Relationship between Raman spectral pattern and crystallographic orientation of a rock-forming mineral: a case study of Fo89Fa11 olivine,
J. Raman Spectrosc. 39, 1653–1659. [doi:10.1002/jrs.2094]

2. M. Arakawa, J. Yamamoto, and H. Kagi (2008)
Micro-Raman thermometer for CO2 fluids: Temperature and density dependence on Raman spectra of CO2 fluids,
Chem. Lett. 37, 280–281. [doi:10.1246/cl.2008.280]

1. M. Arakawa, J. Yamamoto, and H. Kagi (2007)
Developing micro-Raman mass spectrometry for measuring carbon isotopic composition of carbon dioxide,
Appl. Spectrosc. 61, 701–705. [doi:10.1366/000370207781393244]


❉ Japanese articles

7. 荒川雅, 寺嵜亨 (2022)
銀クラスター上での一酸化窒素分子の逐次反応:サイズに依存した反応経路,
Bull. Jpn. Soc. Coord. Chem. (錯体化学会誌) 80, in press.

6. 飯田岳史, 堀尾琢哉, 荒川雅, 寺嵜亨 (2022)
イオンビーム収束性能を向上させたリフレクトロン型飛行時間質量分析計の開発,
Bull. Soc. Nano Sci. Tech. (ナノ学会会報) 21, 17–22.

5. 荒川雅, G. Naresh Patwari, 寺嵜亨 (2020)
アンモニアによるタンタルクラスター正イオンの窒化過程:5族元素窒化物の組成の起源の探究,
Bull. Soc. Nano Sci. Tech. (ナノ学会会報) 19, 21–26.

4. 荒川雅 (2020)
気相金属化合物クラスターの反応研究による宇宙分子進化へのアプローチ,
低温科学 78, 127–133. [doi: 10.14943/lowtemsci.78.127]

3. 早川鉄一郎, 荒川雅, 寺嵜亨 (2016)
X線による孤立クラスターの電子状態計測,
光アライアンス(日本工業出版) 27, 42–46.

2. 荒川雅 (2016)
鉱物組成クラスターイオンの生成と反応:星間空間での化学反応のモデルとして,
Bull. Soc. Nano Sci. Tech. (ナノ学会会報) 14, 83–89.

1. 荒川雅, 鍵裕之, Fernandez-Baca J. A., Chakoumakos B. C., 深澤裕 (2011)
中性子回折による氷結晶の構造解明と惑星科学への応用,
日本惑星科学会誌 遊星人 20, 309–316.


❉ Prize

Award for Student, "Memory effect on hydrogen ordering makes ice more attractive: accelerating evolution of icy grain", JSSI & JSSE joint Conference on Snow and Ice Research-2010/Sendai

Best Presentation Award, "Structure analysis of crystalline ice using neutron powder diffraction and infrared spectroscopy", Fall meeting 2010, The Japanese society for planetary sciences


❉ Talks at international conferences

M. Arakawa, K. Kono, Y. Sekine, and A. Terasaki
Reaction of Size-Selected Iron-Oxide Cluster Cations with Methane: A Model Study of Chemical Processes in Mars’ Atmosphere, 21th International Symposium on Small Particles and Inorganic Cluster (ISSPIC XXI), Berlin, Germany, September 5, 2023, HT8. [hot topic]

M. Arakawa, M. Horioka, K. Minamikawa, T. Kawano, and A. Terasaki
Reaction kinetics of NO on Agn+ and AgnM+ (M = Sc–Ni): Size- and dopant-dependent reaction pathways, The Symposium on Size-Selected Clusters S3C, Davos, Switzerland, March, 2023, HT4. [hot topic]

M. Arakawa, M. Horioka, K. Minamikawa, T. Kawano, and A. Terasaki
Reaction kinetics of nitric oxide molecules on silver cluster cations: Size-dependent reaction pathways, International Congress on Pure & Applied Chemistry Kota Kinabalu (ICPAC Kota Kinabalu 2022), Sabah, Malaysia, November, 2022, PCC38. [invited]

M. Arakawa and A. Terasaki
Elementary processes in chemical evolution studied by size-selected cluster chemistry, The 23rd East Asian Workshop on Chemical Dynamics (EAWCD), Adelaide, Australia, September, 2019. [invited]

M. Arakawa and A. Terasaki
Reaction of gas-phase metal and mineral clusters with H2O, CO, and H2 molecules related to chemistry in space, International Congress on Pure & Applied Chemistry Yangon (ICPAC Yangon 2019), Yangon, Myanmer, August, 2019, PCC13. [invited]

M. Arakawa, G. Naresh Patwari, and A. Terasaki
The origin of bulk-nitride composition of group 5 metals as revealed by nitridation of tantalum cluster cations by ammonia molecules, International Congress on Pure & Applied Chemistry Langkawi (ICPAC Langkawi 2018), Langkawi, Malaysia, October 31, 2018, PCC21. [invited]

M. Arakawa, K. Ando, S. Fujimoto, S. Mishra, G. Naresh Patwari, and A. Terasaki
Successive nitridation of tantalum cluster cations by ammonia molecules: The origin of bulk-nitride composition of group 5 metals, 19th International Symposium on Small Particles and Inorganic Cluster (ISSPIC XIX), Hangzhou, China, August 13, 2018, H3. [hot topic]

M. Arakawa
Application of cluster chemistry to astrochemistry: Molecular evolution related to mineral clusters, Kaleidoscope: A Discussion Meeting in Chemistry, Goa, India, July 6, 2018. [invited]

M. Arakawa, G. Naresh Patwari, and A. Terasaki
Nitridation mechanism of tantalum cluster cations by ammonia molecules: contrast to other group 5 metals, Gas Phase Model Systems for Catalysis – GPMC 2018, Ulm, Germany, June 18, 2018, HT3. [hot topic]

M. Arakawa
Reaction of silicate clusters related to chemistry in the interstellar environment, International Symposium on Molecular Science -Physical Chemistry/ Theoretical Chemistry, Chemoinformatics, Computational Chemistry-, Funabashi, Chiba, Japan, March 22, 2018, 3E1-47 (oral). [invited]

M. Arakawa, R. Yamane, and A. Terasaki,
Reaction sites of CO on size-selected silicon-oxide cluster anions as a model of mineral surfaces, Workshop on Nanoscale Atomic and Molecular Systems, Fukuoka, Japan, August 20, 2015. [invited]

M. Arakawa, K. Kohara, and A. Terasaki,
Formation of hydrated-alumina clusters toward elucidation of generation process of organic molecules on mineral surfaces, Workshop on Interstellar Matter, Sapporo, Japan, October 2014.

M. Arakawa, K. Kohara, and A. Terasaki,
Dissociation, oxidation, hydroxylation, and hydration of aluminum cluster cations upon reaction with H2O and O2, International Bunsen Discussion Meeting, Gas Phase Model Systems for Catalysis – GPMC 2014, Ulm, Germany, April 2014, HT-8. [hot topic]

M. Arakawa, K. Kohara, and A, Terasaki,
Formation of stable aluminum hydroxide clusters in aluminum-cluster ion beam exposed to O2 and H2O, Trombay Symposium on Radiation and Photochemistry, Munbai, India, January 2014, IT-27. [invited]

M. Arakawa, H. Kagi, J. A. Fernadez-Baca, B. C. Chakoumakos, and Fukazawa H.,
Memory effect on hydrogen ordering in the growth of ferroelectric ice XI, 12th International Conference on the Physics and Chemistry of Ice, Sapporo, Hokkaido, Japan, September, 2010, 10-A1-1. [invited]


❉ News

"Electric ice a shock to the solar system" by Lisa Grossman, New Scientist, issue 2827, pp. 8–9, (2011).



トップページにジャンプ