Reaction of Al_N⁺ with H₂O

H₂ is attracting much attention as an innovative energy carrier alternative to conventional fuels. One of the methods to produce hydrogen is a use of Al or its alloys to reduce H₂O to H₂ because of its efficiency, safety, and environmental friendliness.

Size dependence of reaction products

Size dependence of the reaction products

 $AI_N^+ + H_2 \rightarrow AI_N(H_2O)^+ \longrightarrow AI_NO^+ + H_2$

The barrier of the oxidation reaction depends on size.

Intensity / arbitrary units

A small ΔE_{HL} causes a large polarisability, and a large internal energy of $[AI_N(H_2O)^+]^*$.

However, dipole–induced dipole interaction is in the range of 0.01–0.1 eV: this is generally comparable or lower than the ion–dipole interaction.

Collision-energy dependence (N = 11)

Summary

The H₂ generation reaction occurs only if $[AI_N(H_2O)^+]^*$ has high internal energy.

(M. Arakawa, K. Kohara, T. Ito, and A. Terasaki, Eur. Phys. J. D 67, 80, 2013)